«Развитие познавательных интересов на уроках математики»

 

Из опыта работы учителя математики МОУ «Букреевская общеобразовательная школа» Курского района Курской области Прокопова С.П.

 

Математика объективно является одной из самых сложных школьных дисциплин и вызывает субъективные трудности у многих учащихся. Эффективность процесса обучения математике в наше время определяется многими факторами, но главная роль принадлежит учителю.                                                                                                 

Его задача, прежде всего, воспитать активно мыслящую личность. От мастерства учителя, его умения управлять процессом формирования знаний учащихся, развитием их мышления во многом зависит, сможет ли ученик творчески подойти к изучаемому материалу.

 Остановлюсь на некоторых приемах, которые способствуют успешному усвоению учебного материала, развитию познавательной активности школьников.

Ведь активизация – эта такая организация познавательной деятельности учащихся, при которой учебный материал становится предметом активных мыслительных и практических действий каждого ученика. Она должна обеспечить не только простое запоминание материала и формирование устойчивого внимания, но и дать учащимся некоторые навыки и умения самостоятельно добывать знания. Главным условием формирования познавательной активности школьников являются содержание и организация урока. Отбирая материал и продумывая приемы, которые будут использованы на уроке, учителю надо оценивать их с точки зрения возможности возбудить и поддерживать интерес к предмету.

Развитию познавательных интересов, любви к изучаемому предмету и к самому процессу умственного труда способствует такая организация обучения, при которой ученик действует активно, вовлекается в процесс самостоятельного поиска и "открытия" новых знаний, решает вопросы проблемного характера.

Учебный труд, как и всякий другой, интересен тогда, когда он разнообразен. Однообразная информация и однообразные способы действий очень быстро вызывают скуку.

Для появления интереса к изучаемому предмету необходимо понимание нужности, важности, целесообразности изучения данного предмета в целом и отдельных его разделов.

Чем больше новый материал связан с усвоенными ранее знаниями, тем он интереснее для учащихся. Связь изучаемого с интересами, уже существовавшими у школьников ранее, также способствует возникновению интереса к новому материалу.

Ни слишком лёгкий, ни слишком трудный материал не вызывает интереса. Обучение должно быть трудным, но посильным.

Чем чаще проверяется и оценивается работа школьника, тем интереснее ему работать.

Яркость, эмоциональность учебного материала, взволнованность самого учителя с огромной силой воздействуют на школьника, на его отношение к предмету.

Познавательный интерес – это один из важнейших для нас мотивов учения школьников. Его действие очень сильно.

Познавательный интерес при правильной педагогической организации деятельности учащихся и систематической и воспитательной деятельности может и должен стать устойчивой чертой личности школьника и открывает сильное влияние на его развитие.

 

Будет ли интерес к предмету расти или падать до неприязни к нему во многом зависит от учителя и классного коллектива. К арсеналу, помогающему учителю формировать устойчивый интерес к предмету, можно отнести содержание изучаемого материала, умелое сочетание форм и методов работы на уроке, моральный климат в отношениях как учителя с учащимися данного класса, так и между учащимися внутри классного коллектива.

При проблеме активизации познавательной деятельности печаталось много трудов. В данной работе я предлагаю несколько приёмов развития познавательной активности учащихся, которые используются мною на уроках в разной степени в зависимости от возраста ребят, материала, темы, особенностей класса.

Все предложенные приёмы рождались постепенно в течение многих лет работы, часть из них заимствована из опыта работы других учителей, часть – из книг, методических пособий, часть из собственных наблюдений  и выводов.  Хорошо известно, что учащиеся, владеющие твёрдыми навыками устного счёта, быстрее осваивают технику алгебраических преобразований, лучше справляются с различными заданиями, составной частью которых являются вычисления. В устных вычислениях развиваются память учащихся, быстрота их реакции, сосредоточенность – важные элементы общего развития. Решение устных задач придает уроку необходимую глубину и живость, открывает широкие возможности для выявления и формирования у учащихся склонностей и интересов к математике

Обработке вычислительных навыков способствуют различные игры. Например, игра "Ай да ну". Учитель называет подряд числа, а ученики числа, которые кратны трём , должны, сопровождать словами "Ай да ну", можно ещё и хлопком. Ряд, который меньше допускал ошибок, является победителем.

"Счёт-дополнение". Учитель записывает на доске какое-то число, допустим, 15,7 . Затем он медленно называет число, которое меньше, чем 15,7.  Ученики должны в ответ назвать другое число, дополняющее данное до 15,7. Те числа, которые называет учитель, и те, что дают ученики, не записываются. Этим обеспечивается большая тренировка в запоминании чисел.

" Торопись, да не ошибись." Эта игра – фактически математический диктант. Учитель медленно прочитывает задание за заданием, а учащиеся на листочках записывают ответы.

"Не зевай." Ученики каждого ряда получают по карточке. У первого ученика в ряду задание написано полностью, а у всех остальных вместо первого числа написано многоточие. Что скрывается за многоточием, ученик узнаёт только тогда, когда его товарищ, сидящий впереди, сообщит ему ответ в своём задании. Этот ответ и будет недостающим числом. В такой игре все должны быть предельно внимательны, поскольку ошибка одного ученика зачёркивает работу всех остальных.

"Составь слово." Учитель предлагает на карточках написанные сверху вниз 5-6 примеров, и на каждый пример 3-4 варианта ответа, которые закодированы буквами. Ребята в классе разбиваются на несколько команд, обычно команду составляют сидящие друг за другом. Каждый из членов команды решает соответствующий пример, выбирает правильный ответ и записывает букву-код. По окончании счёта у ребят появляется слово (желательно похвалу).

" Математическая эстафета." В V-VI классах внимание учащихся нестойкое. Возникает необходимость на уроке переключаться с одного вида деятельности на другой. В этом случае выручает математическая эстафета. Лучший результат дают эстафеты, проводимые в конце урока.

Например при изучении темы "Умножение одночленов"  можно провести эстафету. На каждый ряд раздают по одинаковой карточке , играющей роль эстафетной палочки, на которой изображены множимое, последующие множители и окончательный результат – произведение. Учащимся даётся задание "закрыть форточки", то есть заполнить пустые места промежуточными произведениями, которые записывают только простым карандашом и после того, как тщательно проверено решение предыдущих примеров. Эта эстафета развивает также умение контролировать себя.

Нравится ребятам, когда учитель даёт задание на исправление преднамеренно сделанных ошибок в решении, на восстановление частично стёртых записей. Недописанная фраза, недорешенная задача, недосказанное условие в задаче стимулирует работу учащихся.

Задание со сменой установки.

Этот приём работы на уроке позволяет не только проверить знания детей по теме, но и развивать зрительную память, быстроту реакции, внимание. Почему приём носит такое название? В этом случае мы чуть-чуть "обманываем" детей, говоря, что будет выполняться тест, проверяющий и развивающий зрительную память. Детям надоедают одни и те же слова: " Решим задачу, выполним упражнение и т.д." Мы меняем формулировку задания, зная, что кроме развития памяти одновременно проверяем качество усвоения программного материала. Суть приёма в следующем: на доске заранее пишется задание (несколько чисел, фигур). Учащимся предлагается запомнить их в том же порядке. Затем задание убираем, а дети должны постараться ответить на вопросы учителя устно или письменно.

52. 0. 45. 248. 1941

Сколько всего чисел?

На каком месте стоит число, которое не является натуральным?

На каком месте стоит трёхзначное число?

Назовите первое число.

Какому историческому событию соответствует последнее число?

Много делается учителями в плане формирования познавательного интереса у учащихся. Но, несмотря на это, на уроке часто можно встретиться с таким явлением: после предложения учителя выполнить определённое задание в классе находится несколько учащихся, ожидающих появления готового решения на доске. Это типичное проявление отсутствия познавательного интереса к изучаемой теме. В чём причина? Есть основание полагать, что обстоятельством, способствующим такой ситуации, является уверенность слабоуспевающего ученик в том, что выполнить это задание предложат более успевающему.

Как же привлечь внимание таких учащихся к поставленному заданию? В таких случаях я применяю карточки-консультанты. Опыт показывает, что применение таких карточек в течение 3-4х недель помогает им освоить ранее непонятный материал и хорошо воспринять новые темы.

Карточка-консультант состоит из чередования трёх блоков:

Опорная формула, написанная цветными чернилами.

Решённые примеры.

Р.С. – Реши сам.

Делать эти карточки следует из тонкого картона. Приведу пример карточки-консультанта (прямоугольник вырезается).

(a + b)2 = a2 + 2ab + b2

(5x + 3)2 = (5x)2 + 2 . 5x . 3 + 32 = 25x2 + 30x + 9

(4x + 5y)2 = (4x)2 +2 . 4x . 5y + (5y)2 = 16x2 + 40xy + 25y2

3. P.C.

Ученик получает чистый лист бумаги, на котором пишет свою фамилию, сверху накладывает карточку-консультант. Знакомится с формулой и разобранными примерами, затем решает сам. Данный метод имеет и воспитывающую функцию. Когда каждый ученик на уроке занят посильным делом, проблема дисциплины снимается сама собой.

Очень часто причины плохого выполнения письменных работ контролирующего характера кроется в отсутствии у школьников умения осуществлять самоконтроль. Это умение надо последовательно формировать. Интерес к самоконтролю может вызвать такая форма проверки кратковременных самостоятельных работ. После истечения времени, отведённого на выполнение самостоятельного задания, учитель предлагает учащимся обменяться тетрадями и проверить работу товарища. Верные решения записаны на доске. Это не только воспитывает внимание, но и вызывает познавательный интерес к содержанию учебного материала, о чём свидетельствуют наблюдения за учащимися. При проведении одной из таких работ слабоуспевающий ученик, проверяя работу товарища, заметил, что теперь бы он написал работу лучше, так как понял, как надо выполнять задания данного типа. Такая форма работы учит учащихся не только проверять, но и качественно выполнять задания, предложенные на письменных работах.

Усталость – одна из причин падения внимания и интереса к учению. Уменьшить усталость учащихся от выполнения однообразных упражнений можно с помощью занимательных задач.

Занимательная задача – это настоящая математическая задача, только с неожиданным или, как сейчас принять говорить, нестандартным решением. Такие задачи очень полезны для развития гибкости ума, выработки навыков нешаблонного мышления, повышения интереса к предмету.

В таких задачах математика предстаёт перед учащимися новой гранью. Занимательность не исчерпывается только задачами. Это может быть юмор, доступный пониманию детей, софизм, логический парадокс, интересный исторический факт, пословицы, которые можно применить к математическим чертежам.

Приведу примеры.

"Графики функций – пословицы."

 

1. "Повторение – мать учения."

2. "Любишь с горы кататься, люби и саночки возить."

3. " Как аукнется, так и откликнется."

Логический парадокс.

Если лжец говорит про себя, что он лжец, то кто он?

Исторический факт.

Известный древнегреческий учёный Пифагор установил замечательное соотношение между гипотенузой и катетом в прямоугольном треугольнике. А он ещё и олимпийский чемпион в кулачном бою (по боксу).

 Одним из средств активизации познавательной деятельности школьников является широкое использование их жизненного опыта. Большую роль при этом играют практические работы, а также решение задач с практическим содержанием.

Так, объяснение тему “Координатная плоскость” в 6-ом классе начинаю с вопроса: “Укажите из своей жизненной практики примеры, где положение объекта задается при помощи чисел”. Учащиеся по очереди называют примеры: место в кинозале, положение фигуры на шахматной доске, широта и долгота места на карте и др. Затем формулируется задача…

Изучение вопроса о сумме n–первых членах арифметической прогрессии в 9-ом классе начинаю с рассказа: “Примерно 200 лет тому назад в одной из школ Германии на уроке математики учитель предложил ученикам найти сумму первых 100 натуральных чисел. Все принялись подряд складывать числа, а один ученик почти сразу же дал правильный ответ. Имя этого ученика Карл Фридрих Гаусс. В последствии он стал великим математиком. Как удалось Гауссу так быстро подсчитать эту сумму?”

Предлагаю учащимся поискать решение этой задачи, подумать, как проще и удобнее выполнить его. Постепенно учащиеся находят правильное решение: (1+100)*50=5050. Затем выясняем, что последовательность 1,2,3,…,100 есть частный случай арифметической прогрессии и выводим формулу для суммы n–первых членов.

Особое внимание следует обращать на задания, которые формируют умение анализировать, сравнивать, обобщать, выделять главное, контролировать и планировать свою деятельность. Так, при прохождении темы “Решение треугольников”, ученикам предлагаю домашнее задание: составить рассказ о теоремах синусов и косинусов по плану:

  1. Что вы знаете о возникновении теоремы
  2. Какого типа задачи вы можете решать с помощью этих теорем
  3. Как можно использовать эти теоремы в других предметах или в практической жизни человека.

Такие задания систематизируют знания учащихся, учат их видеть основное, повышают речевую активность.

Для воспитания познавательной активности школьников использую в своей практике ознакомление их с различными способами доказательства теорем, различными подходами к решению одной и той же задач

 

Задача: В одной цистерне 59 т нефти, в другой – 44 т. Через сколько дней в Цистернах останется одинаковое количество горючего, если ежедневно из первой расходуется 5 т, а из второй 2 т.

Решение: I способ – алгебраический.

59–5х=44–2х, х=5 (дней).

II способ – арифметический.

1) 59–44=15, 2) 5–2=3, 3) 15:3=5 (дней).

Развитию познавательной активности и самостоятельности учащихся способствуют факультативные занятия. Воспитывать интерес к математике и развивать математические способности, а тем более, раскрывать перед учащимися содержание и красоту математики можно только на основе хорошего математического содержания соответствующих мероприятий. Большую пользу в воспитании самостоятельности учащихся приносят задания по моделированию. Такие задания способствуют пробуждению интереса учащихся к математике, более сознательному усвоению курса, связи математики с жизнью и с другими предметами, пополняют математические кабинеты интересными и полезными пособиями.

Олимпиады, КВН, математические вечера, выпуск математических газет, участие в неделе математики, все это также способствует развитию познавательной активности учащихся, так как для подготовки к этим мероприятиям необходимо самостоятельно ответить на поставленные вопросы, подобрать материал, задуматься над той или иной проблемой. Проблема должна быть доступной пониманию учащихся.

Научить детей трудиться и мыслить – основная задача школы; учитель должен уметь создавать творческий, деловой настрой на уроке. Требованиям современного процесса обучения и воспитания отвечает умелое применение на уроке наглядности и технических средств. Каждое средство обучения имеет свои дидактические функции, свои возможности использования – отсюда следует и комплексное использование всех видов наглядности. Если слово учителя подкреплено хорошо продуманным зрительным образом, если на помощь приходят разнообразные средства, то урок становится живым и интересным для каждого ученика. Перед учителями школ поставлена важнейшая задача – осуществлять комплексный подход к воспитанию школьников. Но эту задачу невозможно решать без воспитания активной познавательной деятельности и самостоятельности учащихся. Наша задача, как преподавателей, прежде всего, воспитать активно мыслящую личность. От нашего умения управлять процессом формирования знаний учащихся, развитием их мышления во многом зависит, сможет ли ученик творчески подойти к изучаемому материалу.

 Мы может сделать очень много, чтобы окрасить школьную жизнь детей одним из самых прекрасных человеческих чувств – радостью познания.

Список использованной литературы.

Бондаренко С.М. Урок творчество учителя. Серия педагогика и психология. М. 1984 – 3

Коротаева Е.В. Обучающие технологии в познавательной деятельности школьников. Библиотека журнала “Директор школы” 2003 – 2

Корчемлюк О.М. Задания для развития памяти и внимания на уроках математики. М. 1994.

Математика, Еженедельное учебно-методическое приложение к газете “Первое сентября”

Математика в школе. Научно-методический журнал. 1985-5, 1991-2, 1991-3, 1991-4, 1993-4.

Современные технологии обучения. Интерактивные методы. Под редакцией Г.В.Борисовой, Т.Ю.Аветовой, Л.И.Косовой. М.2002

Сорокин П.И. Занимательные задачи по математике. М.1985

Поташник М.М. Как развивать педагогическое творчество. Серия педагогика и психология. 1987-1

Энциклопедия педагогических технологий. М.2001г.

 

Бесплатный хостинг uCoz